
Data Analytics Unit 5 - Advanced Techniques

Vibha Masti - vibha@pesu.pes.edu

1 Latent Semantic Analysis (LSA)

• Form of dimensionality reduction for text data (NLP)
• Topic modelling technique - extracting topics from large text documents
• Topic defined by proportions of words it contains
• Unsupervised learning technique
• Uses contextual knowledge - words are related to their surrounding words
• Automatically done with linear algebra techniques

1.1 The vector space model

• Create term (rows) by document (columns) matrix
• Each row is a vector
• Find cosine similarity between vectors

1.2 Problems with vector space model

• Polysemy (same words with different meanings) - leads to poor precision

(
TP

TP+FP

)
– I liked his last novel quite a lot
– We would like to go for a novel marketing campaign

• Synonymy (different words with same meaning) - leads to poor recall

(
TP

TP+FN

)
– I am a car mechanic
– I work in the automobile industry

1.3 Steps of LSA

1. Assume we have m text documents with n unique words across them all
2. Create an n×m document-term matrix
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3. Optionally, create a TF-IDF matrix

• TF(t, d) = Number of occurrences of term t in document d
• DF(t) = Number of documents with the term t occurring

• IDF(t) = 1 + log

(
N

DF(t)

)
– N : number of documents in the corpus
– Eg: suppose there are 100 documents in the corpus and 10 documents contain the term text

– IDF(text) = 1 + log

(
100

10

)
= 1 + log 10 = 1 + 1 = 2

• TF-IDF(t, d) = TF(t, d)× IDF(t)

4. Transpose the matrix to get a term-document matrix of dimensions n×m
5. Perform SVD on the n×m matrix where the rows are the words and the columns are the documents

1.4 LSA Example

• Corpus - titles of 9 technical memoranda; 5 about human computer interaction (HCI), and 4 about mathematical
graph theory, topics that are conceptually quite disjoint

• Frequency matrix - 9 columns for the 9 documents, 12 rows for the 12 words where each word appears in more
than 1 document

• Find cosine similarity between human and user and human and minors

c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 0 0 1 0 0 0 0 0

interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0

user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1

minors 0 0 0 0 0 0 0 1 1

– sim(human, user) = 0
– sim(human,minor) = 0
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• Perform SVD on the term-document matrix (eg shows full SVD and not rank reduced SVD) - full code here.

import numpy as np

term_doc_counts = np.array([

[1,0,0,1,0,0,0,0,0],

[1,0,1,0,0,0,0,0,0],

[1,1,0,0,0,0,0,0,0],

[0,1,1,0,1,0,0,0,0],

[0,1,1,2,0,0,0,0,0],

[0,1,0,0,1,0,0,0,0],

[0,1,0,0,1,0,0,0,0],

[0,0,1,1,0,0,0,0,0],

[0,1,0,0,0,0,0,0,1],

[0,0,0,0,0,1,1,1,0],

[0,0,0,0,0,0,1,1,1],

[0,0,0,0,0,0,0,1,1]

])

u, s, vt = np.linalg.svd(term_doc_counts, full_matrices=True)

# Taking only the k=2 most important features

up, sp, vtp = u[:, 0:2], np.diag(s[0:2]), vt[0:2, :]

# Estimate the new term-document matrix

lsa_term_doc = up @ sp @ vtp

• Find new cosine similarity between human and user and human and minors

c1 c2 c3 c4 c5 m1 m2 m3 m4

human 0.16 0.4 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09

interface 0.14 0.37 0.33 0.4 0.16 -0.03 -0.07 -0.1 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12

user 0.26 0.84 0.61 0.7 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.2 -0.11
survey 0.1 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
graph -0.06 0.34 -0.15 -0.3 0.2 0.31 0.69 0.98 0.85

minors -0.04 0.25 -0.1 -0.21 0.15 0.22 0.5 0.71 0.62

– sim(human, user) = 0.89
– sim(human,minor) = −0.28

1.5 Pros and Cons of LSA

Pros:

• Fast and easy
• Decent results (bettern than vector model)

Cons:

• Linear model
• LSA assumes a Gaussian distribution of the terms in the documents
• SVD is computationally intensive as more data generated
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2 Concept of Hidden Variables

2.1 Bayesian network

• Probabilistic graphical model for representing knowledge about an uncertain domain
• Nodes are random variables and edges are conditional probabilities
• Bayes nets/belief networks are DAGs where cycles are not permitted
• Eg: the following DAG indicates that the incidence of two waterborne diseases (diarrhoea and typhoid) depends
on three indicators of water samples:

– total nitrogen
– fat/oil
– bacteria count

Each of them is influenced by another layer of nodes:

– elevation
– flooding
– population density
– land use

Flooding may be further influenced by two factors:

– percolation
– rainfall

• Overall Bayes net can be represented as

• The number of parameters to specify for the joint probability distribution of a network of n binary random
variables is in the order of O(2n)

2.2 Hidden variable

• Can simplify the complex model by introducing a common cause node
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3 Simpson’s Paradox

• A trend that is observed in data reverses when the data are separated into different groups
• Resolved when confounding variables and causal relations are appropriately addressed in the statistical mod-
elling

• Most famous example: gender bias in UC Berkeley graduate admissions of 1973
• Arises due to presence of lurking variables that split the data up into groups

3.1 UC Berkeley Graduate Admissions

• Data shown: men far more likely to get accepted into programs than women

All Men Women
Applicants Admitted Applicants Admitted Applicants Admitted

Total 12,763 41% 8,442 44% 4,321 35%

• Data of top 6 departments, small but statistically significant bias in favour of women

Department
All Men Women

Applicants Admitted Applicants Admitted Applicants Admitted
A 933 64% 825 62% 108 82%
B 585 63% 560 63% 25 68%
C 918 35% 325 37% 593 34%
D 792 34% 417 33% 375 35%
E 584 25% 191 28% 393 24%
F 714 6% 373 6% 341 7%

Total 4526 39% 2691 45% 1835 30%

• Graphical representation of Simpson’s Paradox
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3.2 Soft Drinks Industry - Simple Example

• Soft drinks industry trying to decide between two new flavours in a public survey

Flavour Sample Size No. who liked flavour
Sinful Strawberry 1000 800
Passionate Peach 1000 750

• 80% of the people preferred Sinful Strawberry
• 75% of the people preferred Passionate Peach
• Splitting up by sex

Flavour Men No. who liked flavour Women No. who liked flavour
Sinful Strawberry 900 760 100 40
Passionate Peach 700 600 300 150

• 84.4% of men and 40% of women preferred Sinful Strawberry
• 85.7% of men and 50% of women preferred Passionate Peach
• Both men and women separately preferred Passionate Peach even though overall Sinful Strawberry was pre-
ferred

• Position of the centre of each circle corresponds to that group’s probability of liking the flavour
• Size of each circle: proportion of population as men or women
• Both groups lie further to the right - have higher probability for liking Peach
• The marginal distributions shift and switch as samples become weighted with respect to the lurking variable
(sex)

(a) (b) (c)

4 Confounding Variables

• Unknown, unaccounted for variable that can suggest correlation between variables when it does not exist
• Example:

– Independent variable - lack of exercise
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– Dependent variable - weight gain
– Confounding variable - age/sex/food intake

• Confounding variables

– Increase variance
– Introduce bias

5 Hidden variables vs Confounding variables

• Hidden variables: connects two variables that are spuriously correlated

– Ice cream sales and bank robberies

• Confounding variables: related to the two variables that are not spuriously correlated

– Lack of exercise and increase in weight

5.1 Confounding bias

• Result of having confounding variables in a model
• Usually due to errors in data collection or measurement methods
• Direction - depending on under or over estimation of the correlation

– Positive confounding: observed association biased away from null (overestimates the effect)
– Negative confounding: observed association biased towards null (underestimates the effect)

Techniques to reduce effect:

• Random sampling to reduce bias
• Control variables (constants for the data collection) like age
• Counterbalancing for paired designs

Causes of omitted variable bias:

• Omitted variable must correlate with dependent variable
• Omitted variable must correlate with at least one independent variable
• OLS assumptions violated (correlation of residuals with independent variable)

Example

• Define 3 variables: included (independent and included) - I, dependent (dependent and included) - D, and
omitted (not included) - O

• Correlations summarised in table

I and O: -ve correlation I and O: +ve correlation
I and D: -ve correlation Positive bias Negative bias
I and D: +ve correlation Negative bias Positive bias

6 Stochastic Models

• Problems that are dynamic in nature
• Defined as a collection of random variables {Xn|n ≥ 0} indexed by n (typically time)
• Value of Xn is called the state of the stochastic process at index n
• State space: set of all possible values of X
• Examples of stochastic processes:

1. Poisson process
2. Compound Poisson process
3. Markov process and Markov chain
4. Markov decision process
5. Partially observable MDP
6. Semi-Markov process
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7. Random walk
8. Brownian motion process
9. Autoregressive and moving average processes

6.1 Poisson Process

• Really good videos by khan academy: part 1 and part 2
• Count the number of events that occur over a period of time
• λ is the number of events that occur in a defined period of time (eg: 1 hour)

Poisson distribution (probability of k events occuring over time period t) is given by
(λt)

k

k!
e−λt

• Homogeneous Poisson Process (HPP) is a stochastic counting process N(t)
• N(0) = 0 (number of event that have occured at time 0)
• N(t) has independent increments (N(t1)−N(t0) is independent from N(t2)−N(t2))
• Number of events by time t is the cumulative distribution of a Poisson distribution

P [N(t) ≤ n] =
n∑

i=0

(λt)
i

i!
e−λt

• Mean and variance of Poisson process N(t) are λt

• MLE of λ is defined as λ̂ =
1

1
n

∑n
i=1 Xi

where Xi are the mean times between failure/demand

Time between events

• Time between events follows exponential distribution
• Density function of time between events: f(t) = λe−λt

• CDF of time between events: F (t) = 1− e−λt

6.1.1 Example - textbook

Johny Sparewala (JS) is a supplier of aircraft flight control system spares based out of Mumbai, India. The demand
for hydraulic pumps used in the flight control system follows a Poisson process. Sample data (50 cases) on time
between demands (mea- sured in number of days) for hydraulic pumps are shown in Table 16.1.

1. Calculate the expected number of demand for hydraulic pump spares for next two years.
2. Johny Sparewala would like to ensure that the demand for spares over next two years is met in at least 90% of

the cases from the spares stocked (called fill rate) since lead time to manufacture a part is more than 2 years.
Calculate the inventory of spares that would give at least 90% fill rate.

6.1.2 Answer

1. Expected number of hydraulic pump spares for 2 years

• Estimate λ with MLE

• λ̂ =
1

1
n

∑n
i=1 Xi

= 0.0125
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• E[N(t)] - expected number of demand for spares for 2 years (2 × 365 = 730 days) is E[N(730)] = λ̂t =
0.0125× 730 = 9.125

2. Demand is met 90% of the time - probability that k parts are needed in time 730 days is 90% where k is
inventory size

• Calculate smallest k such that
n∑

k=0

(λt)
k

k!
e−λt ≥ 0.90

• Values of CDF and PDF for different values of k

• JS should stock 13 spares to meet the demand 90% of the time
• PDF for λ = 9.125 for different values of k

6.2 Compound Poisson Process

• Regular Poisson process: we are interested in the number of occurrences of events, not the values of the events
themselves

• Example: the number of spare parts needed, number of cars that cross an intersection, etc
• Compound Poisson process: we are interested in the values of each event
• Example: the amount of money drawn from an ATM each time a customer visits it
• The distribution of customers visiting the ATM is a Poisson process X(t)
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• The distribution of the amount of money withdrawn is another independent and identically distributed (IID)
random variable (could be a normal distribution) Yi

• N(t) is the number of events that have occurred until time t in a Poisson process with mean λ

• Compound Poisson process X(t) =
N(t)∑
k=1

Yk

Expected values - mean and variance

• Mean: E[X(t)] = µX(t) = λt× E(Yi)
• Variance: V ar[X(t)] = σ2

X(t) = λt× E(Y 2
i ) = λt× (V AR(Yi) + (E[Yi])

2)

6.2.1 Example - textbook

Customers arrive at an average rate of 12 per hour to withdraw money from an ATM and the arrivals follow a Poisson
process. The money withdrawn are independent and identically distributed with mean and variance INR 4200 and
2,50,000, respectively. If the ATM has INR 6,00,000 cash, what is the probability that it will run out of cash in 10
hours?

6.2.2 Answer

• λ = 12 per hour
• E[Yi] = 4200, V ar[Yi] = 250, 000
• Mean of compound process is µX(t) = λt× E[Yi] = 12× 10× 4200 = 504, 000
• Variance of compound process is σ2

X(t) = λt×(V AR(Yi)+(E[Yi])
2) = 12×10×(250, 000+42002) = 21468×105

• Standard deviation of compound process is σ =
√
21468× 105 = 46333.57

• Probability that cash withdrawn is greater than 600,000 is obtained from normal cumulative distribution

• Z-score =
600, 000− 504, 000

46333.57
= 2.0719

• P (Z ≥ 2.0719) = 0.01914 = 1.91% ≃ 2% chance

6.3 Markov Chains

• Let a sequence of RVs be Xn, n = 1, 2, ..., n
• The conditional probability that Xn+1 = j given a state sequence X0 = i0, X1 = i1, ..., Xn = in for a first order
Markov process only depends on the value of Xn

• P (Xn+1 = j|X0 = i0, X1 = i1, ..., Xn = i) = P (Xn+1 = j|Xn = i) = Pij

• One-step transition probabilities Pij represented in a matrix
P11 P12 ... P1n

P21 P22 ... P2n

... ... ... ...
Pn1 Pn2 ... Pnn


• s-Step transition probability (probability of reaching state j from state i in s steps) is given by

P
(s)
ij =

m∑
r=1

P k
ir × P s−k

rj , 0 < k < s

• Estimation of 1-step probabilities (from MLE) is given by

P̂ij =
Nij∑m
k=1 Nik

where m is the total number of states, Nij are the number of transitions from i to j, Nik are the number of
transitions from i to k.

6.3.1 Anderson-Goodman Test

• Hypothesis test

– H0 : The sequence of RVs (X1, X2, ..., Xn) are independent (zero-order Markov chain)
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– H1 : The sequence of RVs (X1, X2, ..., Xn) are dependent (first-order Markov chain)

• Test statistic (χ2 test)

χ2 =

m∑
i=1

m∑
j=1

(Oij − Eij)
2

Eij

where Oij is the observed number of transitions, Eij is the expected number of transitions assuming indepen-
dence

6.3.2 Likelihood Ratio Test

• To check whether the transition probability matrices are time homogeneous
• In other words, are the transition probabilities constant

– H0 : Pij(t) = Pij , t = 1, 2, ..., T (not a function of time; constant)
– H1 : Pij(t) ̸= Pij , t = 1, 2, ..., T (function of time)

where Pij(t) is the estimated value of transition probability between state i and j from time t to t+ 1
• Test statistic: likelihood ratio test statistic

λ =
∏
t

∏
i,j

[
P̂ij

P̂ij(t)

]nij(t)

where nij(t) is frequency of transition between states i and j at time t

6.3.3 Markov Chains in Predictive Analytics

• Predict Xn given X1 and transition matrix P
• Let PI = (450, 225, 175, 150)
• Let one step transition matrix P be

P =


0.8189 0.0882 0.0472 0.0457
0.1128 0.7180 0.0902 0.0789
0.2077 0.0849 0.6011 0.0929
0.0663 0.0964 0.0964 0.7410


• Distribution of X after n time periods is given by PI × P

[450, 225, 175, 150]×


0.8189 0.0882 0.0472 0.0457
0.1128 0.7180 0.0902 0.0789
0.2077 0.0849 0.6011 0.0929
0.0663 0.0964 0.0964 0.7410


4

= [417.84, 243.06, 150.69, 188.41]

6.3.4 Stationary Distribution in a Markov Chain

• For a large n, PI ×Pn converges to a value known as the steady state or stationary distribution of the Markov
chain and is denoted as π = (π1, π2, ..., πn)

• Consider brand switching between two brands (B1, B2) and let the initial market share be PI = (0.2, 0.8)

Brand 1 Brand 2
Brand 1 0.8 0.2
Brand 2 0.25 0.75

• Can be represented by the state transition diagram
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• Convergence of Pn

• Stationary probability of Markov chain are (0.555556, 0.444444)

Let π = (π1, π2, ..., πn) be a stationary distribution. It satisfies the following equations

1. πj =
m∑

k=1

πk × Pkj which can be rewritten as π = πP

2.
m∑

k=1

πk = 1

6.3.5 Regular Matrix

If a matrix has all nonzero entries, it is regular. A regular matrix will have stationary distribution and satisfy the
stationary system of equations.

6.3.6 Example

The number of flights cancelled by an airline daily is modelled using a Markov chain. The states of the chain and
the description of states are given in Table 16.8.
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The revenue loss (in millions of rupees) due to cancellation of flights in various states is given in Table 16.9.

The transition probability matrix between states is shown in Table 16.10.

1. If there are no cancellations initially, what is the probability that there will be at least one cancellation after
2 days?

2. Calculate the steady-state expected loss due to cancellation of flights.

6.3.7 Answer

1. Probability of at least one cancellation

• Initial state: (1, 0, 0, 0)
• State after 2 days:

(1, 0, 0, 0)×


0.45 0.30 0.20 0.05
0.15 0.60 0.15 0.10
0.10 0.30 0.40 0.20
0 0.10 0.70 0.20


2

= (0.2675, 0.38, 0.25, 0.1025)

• Probability of at least one cancellation = 0.38 + 0.25 + 0.1025 = 0.7325

2. Steady-state expected loss

• System of equations

• Solution: π = (0.163, 0.390, 0.311, 0.137)
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• Expected loss:

6.3.8 Classification of States in Markov Chain

1. Accessible state: State j is accessible from state i if there exists an n such that Pn
ij > 0 (there exists a path

from i to j)
2. Communicating states: State i and j are communicating if there exists n and m such that Pn

ij > 0 and
Pm
ji > 0

3. Irreducible Markov chain: all states are communicating

4. Recurrent state: if
∞∑

n=1
Pn
ii = ∞

• Markov chain will visit state i infinite number of times in the long run
• If state i is recurrent and states i and j are communicating states, then state j is also a recurrent state

5. Transient state: if
∞∑

n=1
Pn
ii < ∞

• Markov chain will visit state i finite number of times in the long run

6. First passage time: fn
ii = P [Xn = 1 = i,Xk ̸= i, k = 1, 2, ..., n− 1, |X0 = i]

• Probability that Markov chain will enter state i exactly n steps after leaving state i without entering it
before that

• Let Fii =
∞∑

n=1
fn
ii

• For recurrent state, Fii = 1
• For transient state, Fii < 1

7. Mean recurrence time: µii =
∞∑

n=1
n× fn

ii

• If mean recurrence time is finite, recurrent state is called a positive recurrent state
• If infinite, it is called a null-recurrent state

8. Periodic state: d(i) is the GCD of n such that Pn
ii > 0

• Special case of recurrent state
• d(i) ≥ 2

9. Aperiodic state:d(i) = 1
10. Ergodic Markov chain:

• State i is ergodic if it is positive recurrent and aperiodic
• Chain is ergodic if all states are ergodic
• Satisfies system of equations

π = π × P

m∑
k=1

πk = 1

11. Limiting probability:

• lim
n→∞

pnij
• Unlike stationary distribution, might not be unique and independent of inital state

6.3.9 Markov Chains with Absorbing States

• State i is absorbing if Pii = 1
• If system enters this state, it will remain in this state
• Absorbing state Markov chain: Markov chain with at least one absorbing state
• Non-absorbing states in an absorbing state Markov chain are transient states
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• Transition matrix not regular - no stationary distribution
• Questions to answer

1. The probability of eventual absorption to a specific absorbing state from various transient states
2. The expected time to absorption from a transient state to absorbing states

6.3.10 Canonical Form of the Transition Matrix of an Absorbing State Markov Chain

• Group absorbing and non-absorbing (transient) states and arrange rows in the matrix
• Top rows: absorbing, bottom rows: transient
• Matrix P divided into 4 matrices: I, 0, R, Q

P =

 A T
A I 0
T R Q


1. I : identity matrix
2. 0 : zero matrix
3. R : probability of absorption from transient state to absorbing state
4. Q : transition between transient states

• Eventual absorption probability: long-run (limiting probability) value of R

Pn =

[
I 0(∑n−1

k=0 Q
k
)
R Qn

]

• For large n,
(∑n−1

k=0 Q
k
)
R gives the probability of eventual absorption to an absorbing state

• As n → ∞,
∑n−1

k=0 Q
k = F = (I −Q)−1

• F is called fundamental matrix
• Expected time to absorption is Fc where c is a unit vector

6.3.11 Example

Airwaves India (AI) is a mobile phone service provider based in Allahabad, India that provides several value-added
services such as mobile data, video conferencing, etc. The market is highly competitive and AI faces high churn rate
among its customers. The customers of AI are categorized into different states as listed below:

1. Customer churn that generated no revenue/profit
2. Customer churn that generated INR 200 profit per month on average (customer uses the service only for

incoming calls and data)
3. Customer state that generated INR 300 profit per month on average
4. Customer state that generated INR 400 profit per month on average
5. Customer state that generated INR 600 profit per month on average
6. Customer state that generated INR 800 profit per month on average

Transition probabilities
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1. If a customer is in state 6, calculate the probability of eventual absorption in state 2?
2. Calculate the expected value of time taken to absorption if the current state is 4

6.3.12 Answer

1. Probability of eventual absorption in state 2

• Start state PI = (0, 0, 0, 0, 0, 1)
• Q = P [3 : 6][3 : 6]

• Probability of absorption FR

2. Expected value of time taken to absorption if the current state is 4

7 A/B Testing

• Bucket testing or split run testing
• User experience research methodology
• Randomised experiment with 2 variants A and B
• Two-sample hypothesis testing
• Compare two versions of a single variable, typically by testing a subject’s response to variant A against variant
B, and determining which of the two variants is more effective

Conversion Rate
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• The instance when any visitor on your website performs a desired action

A/B testing in popular industries

• Media & publishing industry - Netflix
• eCommerce industry - Amazon
• Travel industry - Booking.com
• B2B/SaaS Industry - POSist

7.1 How to perform A/B test

1. Research

• How the website is performing now
• Collect data (number of users, pages with most traffic, conversion goal)
• Tools: Google Analytics, Omniture, Mixpanel etc

2. Observe and Formulate Hypothesis

• Data backed hypotheses
• Ease of setup, impact on macro goals

3. Create Variations

• Control and variations
• Test multiple variations
• Eg: try shorted form with less fields

4. Run test (testing methods)

• A/B testing
• Multivariate testing
• Split URL testing
• Multipage testing

5. Result analysis and deployment

• Metrics
• Percentage increase, confidence level
• Deploy if successful

7.2 What to A/B test

1. Headlines and sub-headlines

• Short, to-the-point
• Fonts, sizes, copy, messaging

2. Body

• Writing style
• Formatting

3. Design and layout
4. Navigation
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5. Forms
6. CTA (Call to action)
7. Social proof

7.3 Mistakes to avoid

1. Not planning your optimisation roadmap
2. Testing too many elements together
3. Ignoring statistical significance
4. Using unbalanced traffic
5. Testing for incorrect duration
6. Failing to follow an iterative process
7. Failing to consider external factors
8. Using the wrong tools
9. Sticking to plain vanilla A/B testing method

7.4 Challenges of A/B testing

1. Deciding what to test
2. Formulating hypotheses
3. Locking in on sample size
4. Analysing test results
5. Maintaining a testing culture
6. Changing Experiment Settings in the Middle of an A/B Test (avoid)

7.5 How to make a testing calendar

1. Measure

• Plan according to business goals
• Define business objectives, website goals, performance indicators, target metrics

2. Prioritise

• Scientifically sort hypotheses

3. A/B test
4. Repeat

• Three outcomes

(a) One of your variations would have won with statistical significance
(b) Control was the better version
(c) Test failed and produces insignificant results

5. Maintaining a testing culture
6. Changing Experiment Settings in the Middle of an A/B Test (avoid)

8 Business Value of Data Analytics

Five important drivers to demonstrate ROI of analytics efforts

1. Acquire more of the right customers
2. Marketing Attribution and Media Mix Modeling

• Wanamaker problem: half the money spent on advertising is wasted
• Do not know which half

3. More Revenue from Current Customers
4. Growth From A/B Testing
5. Moving at the speed of business
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